Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions.

Identifieur interne : 000F99 ( Main/Exploration ); précédent : 000F98; suivant : 001000

Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions.

Auteurs : Ashfaq Ali ; Erik Alexandersson ; Marianne Sandin ; Svante Resjö ; Marit Lenman ; Pete Hedley ; Fredrik Levander ; Erik Andreasson [Suède]

Source :

RBID : pubmed:24947944

Descripteurs français

English descriptors

Abstract

BACKGROUND

In order to get global molecular understanding of one of the most important crop diseases worldwide, we investigated compatible and incompatible interactions between Phytophthora infestans and potato (Solanum tuberosum). We used the two most field-resistant potato clones under Swedish growing conditions, which have the greatest known local diversity of P. infestans populations, and a reference compatible cultivar.

RESULTS

Quantitative label-free proteomics of 51 apoplastic secretome samples (PXD000435) in combination with genome-wide transcript analysis by 42 microarrays (E-MTAB-1515) were used to capture changes in protein abundance and gene expression at 6, 24 and 72 hours after inoculation with P. infestans. To aid mass spectrometry analysis we generated cultivar-specific RNA-seq data (E-MTAB-1712), which increased peptide identifications by 17%. Components induced only during incompatible interactions, which are candidates for hypersensitive response initiation, include a Kunitz-like protease inhibitor, transcription factors and an RCR3-like protein. More secreted proteins had lower abundance in the compatible interaction compared to the incompatible interactions. Based on this observation and because the well-characterized effector-target C14 protease follows this pattern, we suggest 40 putative effector targets.

CONCLUSIONS

In summary, over 17000 transcripts and 1000 secreted proteins changed in abundance in at least one time point, illustrating the dynamics of plant responses to a hemibiotroph. Half of the differentially abundant proteins showed a corresponding change at the transcript level. Many putative hypersensitive and effector-target proteins were single representatives of large gene families.


DOI: 10.1186/1471-2164-15-497
PubMed: 24947944
PubMed Central: PMC4079953


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions.</title>
<author>
<name sortKey="Ali, Ashfaq" sort="Ali, Ashfaq" uniqKey="Ali A" first="Ashfaq" last="Ali">Ashfaq Ali</name>
</author>
<author>
<name sortKey="Alexandersson, Erik" sort="Alexandersson, Erik" uniqKey="Alexandersson E" first="Erik" last="Alexandersson">Erik Alexandersson</name>
</author>
<author>
<name sortKey="Sandin, Marianne" sort="Sandin, Marianne" uniqKey="Sandin M" first="Marianne" last="Sandin">Marianne Sandin</name>
</author>
<author>
<name sortKey="Resjo, Svante" sort="Resjo, Svante" uniqKey="Resjo S" first="Svante" last="Resjö">Svante Resjö</name>
</author>
<author>
<name sortKey="Lenman, Marit" sort="Lenman, Marit" uniqKey="Lenman M" first="Marit" last="Lenman">Marit Lenman</name>
</author>
<author>
<name sortKey="Hedley, Pete" sort="Hedley, Pete" uniqKey="Hedley P" first="Pete" last="Hedley">Pete Hedley</name>
</author>
<author>
<name sortKey="Levander, Fredrik" sort="Levander, Fredrik" uniqKey="Levander F" first="Fredrik" last="Levander">Fredrik Levander</name>
</author>
<author>
<name sortKey="Andreasson, Erik" sort="Andreasson, Erik" uniqKey="Andreasson E" first="Erik" last="Andreasson">Erik Andreasson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Erik.Andreasson@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24947944</idno>
<idno type="pmid">24947944</idno>
<idno type="doi">10.1186/1471-2164-15-497</idno>
<idno type="pmc">PMC4079953</idno>
<idno type="wicri:Area/Main/Corpus">001028</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001028</idno>
<idno type="wicri:Area/Main/Curation">001028</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001028</idno>
<idno type="wicri:Area/Main/Exploration">001028</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions.</title>
<author>
<name sortKey="Ali, Ashfaq" sort="Ali, Ashfaq" uniqKey="Ali A" first="Ashfaq" last="Ali">Ashfaq Ali</name>
</author>
<author>
<name sortKey="Alexandersson, Erik" sort="Alexandersson, Erik" uniqKey="Alexandersson E" first="Erik" last="Alexandersson">Erik Alexandersson</name>
</author>
<author>
<name sortKey="Sandin, Marianne" sort="Sandin, Marianne" uniqKey="Sandin M" first="Marianne" last="Sandin">Marianne Sandin</name>
</author>
<author>
<name sortKey="Resjo, Svante" sort="Resjo, Svante" uniqKey="Resjo S" first="Svante" last="Resjö">Svante Resjö</name>
</author>
<author>
<name sortKey="Lenman, Marit" sort="Lenman, Marit" uniqKey="Lenman M" first="Marit" last="Lenman">Marit Lenman</name>
</author>
<author>
<name sortKey="Hedley, Pete" sort="Hedley, Pete" uniqKey="Hedley P" first="Pete" last="Hedley">Pete Hedley</name>
</author>
<author>
<name sortKey="Levander, Fredrik" sort="Levander, Fredrik" uniqKey="Levander F" first="Fredrik" last="Levander">Fredrik Levander</name>
</author>
<author>
<name sortKey="Andreasson, Erik" sort="Andreasson, Erik" uniqKey="Andreasson E" first="Erik" last="Andreasson">Erik Andreasson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Erik.Andreasson@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Disease Resistance (genetics)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Host-Parasite Interactions (genetics)</term>
<term>Phytophthora infestans (MeSH)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (parasitology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Proteome (MeSH)</term>
<term>Proteomics (methods)</term>
<term>Solanum tuberosum (genetics)</term>
<term>Solanum tuberosum (metabolism)</term>
<term>Solanum tuberosum (parasitology)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Interactions hôte-parasite (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Phytophthora infestans (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Protéomique (méthodes)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Solanum tuberosum (métabolisme)</term>
<term>Solanum tuberosum (parasitologie)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Disease Resistance</term>
<term>Host-Parasite Interactions</term>
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Interactions hôte-parasite</term>
<term>Maladies des plantes</term>
<term>Protéines végétales</term>
<term>Résistance à la maladie</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Diseases</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Phytophthora infestans</term>
<term>Proteome</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Phytophthora infestans</term>
<term>Protéome</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>In order to get global molecular understanding of one of the most important crop diseases worldwide, we investigated compatible and incompatible interactions between Phytophthora infestans and potato (Solanum tuberosum). We used the two most field-resistant potato clones under Swedish growing conditions, which have the greatest known local diversity of P. infestans populations, and a reference compatible cultivar.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Quantitative label-free proteomics of 51 apoplastic secretome samples (PXD000435) in combination with genome-wide transcript analysis by 42 microarrays (E-MTAB-1515) were used to capture changes in protein abundance and gene expression at 6, 24 and 72 hours after inoculation with P. infestans. To aid mass spectrometry analysis we generated cultivar-specific RNA-seq data (E-MTAB-1712), which increased peptide identifications by 17%. Components induced only during incompatible interactions, which are candidates for hypersensitive response initiation, include a Kunitz-like protease inhibitor, transcription factors and an RCR3-like protein. More secreted proteins had lower abundance in the compatible interaction compared to the incompatible interactions. Based on this observation and because the well-characterized effector-target C14 protease follows this pattern, we suggest 40 putative effector targets.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>In summary, over 17000 transcripts and 1000 secreted proteins changed in abundance in at least one time point, illustrating the dynamics of plant responses to a hemibiotroph. Half of the differentially abundant proteins showed a corresponding change at the transcript level. Many putative hypersensitive and effector-target proteins were single representatives of large gene families.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24947944</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions.</ArticleTitle>
<Pagination>
<MedlinePgn>497</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-497</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In order to get global molecular understanding of one of the most important crop diseases worldwide, we investigated compatible and incompatible interactions between Phytophthora infestans and potato (Solanum tuberosum). We used the two most field-resistant potato clones under Swedish growing conditions, which have the greatest known local diversity of P. infestans populations, and a reference compatible cultivar.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Quantitative label-free proteomics of 51 apoplastic secretome samples (PXD000435) in combination with genome-wide transcript analysis by 42 microarrays (E-MTAB-1515) were used to capture changes in protein abundance and gene expression at 6, 24 and 72 hours after inoculation with P. infestans. To aid mass spectrometry analysis we generated cultivar-specific RNA-seq data (E-MTAB-1712), which increased peptide identifications by 17%. Components induced only during incompatible interactions, which are candidates for hypersensitive response initiation, include a Kunitz-like protease inhibitor, transcription factors and an RCR3-like protein. More secreted proteins had lower abundance in the compatible interaction compared to the incompatible interactions. Based on this observation and because the well-characterized effector-target C14 protease follows this pattern, we suggest 40 putative effector targets.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In summary, over 17000 transcripts and 1000 secreted proteins changed in abundance in at least one time point, illustrating the dynamics of plant responses to a hemibiotroph. Half of the differentially abundant proteins showed a corresponding change at the transcript level. Many putative hypersensitive and effector-target proteins were single representatives of large gene families.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Ashfaq</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alexandersson</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sandin</LastName>
<ForeName>Marianne</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Resjö</LastName>
<ForeName>Svante</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lenman</LastName>
<ForeName>Marit</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hedley</LastName>
<ForeName>Pete</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Levander</LastName>
<ForeName>Fredrik</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Andreasson</LastName>
<ForeName>Erik</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Erik.Andreasson@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="Y">Host-Parasite Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="Y">Phytophthora infestans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24947944</ArticleId>
<ArticleId IdType="pii">1471-2164-15-497</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-497</ArticleId>
<ArticleId IdType="pmc">PMC4079953</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2009 Apr;58(2):347-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Aug;159(4):1477-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Oct;17(10):606-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22784825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):364-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17085509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Sep;22(9):1104-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19656045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 14;475(7355):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1153-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Sep 15;28(18):2404-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22815360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jun 18;279(25):26370-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15096512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Dec 12;20(18):3705-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W358-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20067621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Mar;9(5):1302-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19253284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2009 Jan;8(1):145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):230-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2010 Jul;11(4):513-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20618709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Aug 1;22(15):1902-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Apr-May;115(4-5):335-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21530915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1794-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20940351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Oct;23(10):1253-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20636104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 May;23(5):558-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2013 May;12(5):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23306530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 19;473(7347):337-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2028-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19535538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jul;19(7):2225-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Oct 1;25(19):2573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2011 Jan;10(1):R110.000133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20716697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Jul;25(7):910-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22414442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2009 Jun;8(6):3037-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19354269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1654-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Mar;7(3):400-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Feb 01;4:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23378846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Oct;17(10):2832-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16126835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Nov;68(3):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jan;1844(1 Pt A):29-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23567904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Nov 1;24(21):2534-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jul;138(3):1785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Mar;7(5):668-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014;15:315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24773703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Biotechnol. 2013 May;6(3):223-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23279965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2010 Feb;10(4):799-827</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19953550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(7):e41790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22848606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Aug;8(4):424-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15970273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20832-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22143776</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Alexandersson, Erik" sort="Alexandersson, Erik" uniqKey="Alexandersson E" first="Erik" last="Alexandersson">Erik Alexandersson</name>
<name sortKey="Ali, Ashfaq" sort="Ali, Ashfaq" uniqKey="Ali A" first="Ashfaq" last="Ali">Ashfaq Ali</name>
<name sortKey="Hedley, Pete" sort="Hedley, Pete" uniqKey="Hedley P" first="Pete" last="Hedley">Pete Hedley</name>
<name sortKey="Lenman, Marit" sort="Lenman, Marit" uniqKey="Lenman M" first="Marit" last="Lenman">Marit Lenman</name>
<name sortKey="Levander, Fredrik" sort="Levander, Fredrik" uniqKey="Levander F" first="Fredrik" last="Levander">Fredrik Levander</name>
<name sortKey="Resjo, Svante" sort="Resjo, Svante" uniqKey="Resjo S" first="Svante" last="Resjö">Svante Resjö</name>
<name sortKey="Sandin, Marianne" sort="Sandin, Marianne" uniqKey="Sandin M" first="Marianne" last="Sandin">Marianne Sandin</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Andreasson, Erik" sort="Andreasson, Erik" uniqKey="Andreasson E" first="Erik" last="Andreasson">Erik Andreasson</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F99 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F99 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24947944
   |texte=   Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24947944" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024